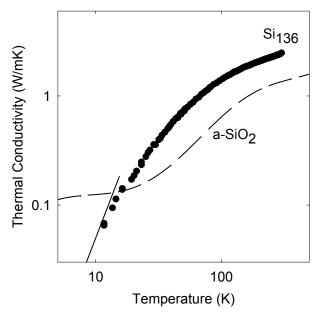
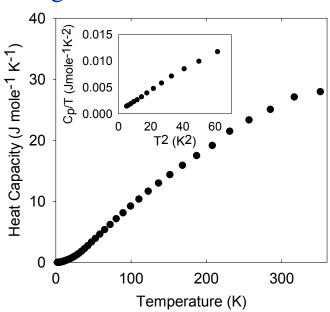

RUI: Acquisition of Desktop X-ray Diffractometer (#0216111)

Using desktop MMA diffractometer to control synthesis and purification processes [1], we have produced very pure samples of an open framework, wide band gap allotrope of silicon Si_{136} .



Open framework structure of Si₁₃₆.



X-ray spectrum of very pure sample of Si₁₃₆. Difference between experimental and fitted spectra is shown as a blue line.

 Si_{136} allotrope has very low thermal conductivity similar to the conductivity of amorphous silica [2]. Very low thermal conductivity and wide band gap make Si_{136} an interesting thermoelectric material.

Thermal conductivity of Si₁₃₆ and amorphous SiO₂.

Heat capacity of Si_{136} . The insert shows that $C_p \sim T^3$ at low temperatures.

- 1. J. Gryko, US Patent 6,423,286; J. Gryko, et al., Phys. Rev. B**62**, R7707 (2000).
- 2. G. S. Nolas, et al., Appl. Phys. Lett. 82, 910 (2003).